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Abstract

The notion of a conditional linear predictor is used as a

distribution- free method for eliminating the individual-specific effects in a

class of nonlinear, unobserved components panel data models. The methodology

is applied to a general count model, which allows for individual dispersion

in addition to an individual mean effect. As a corollary of the general

results, the multinomial quasi-conditional maximum likelihood estimator is

shown to be consistent and asymptotically normal when only the first two

moments in the unobserved effects model have been correctly specified. This

has important implications for analyzing count data in panel contexts.

Simple, robust specification tests for this class of count models are also

developed. A second example covers the case where the variance is

proportional to the square of the mean, encompassing unobserved component

gamma regression models for panel data. Models with serial correlation are

briefly discussed.





1. Introduction

In the standard linear unobserved effects model, it is well knovm that

consistent estimators are available under correct specification of the

conditional mean and strict exogeneity of the explanatory variables,

conditional on the latent individual effect. The usual fixed effects

(within) estimator is consistent, as is the minimum chi-square estimator

proposed by Chamberlain (1982)

.

To be more precise, let ( (y. ,x. ,<^ . ) : i=l , 2 , . . . ) be a sequence of

independent, identically distributed random variables, where y. =

(y.^ y--p)' is Txl , X. = (x' , . . . ,x' )' is TxK, and </> . is the scalar

unobserved effect. The linear unobserved effects model specifies that, for

each t=l, . .
.
,T,

E(y. Ix.,^.) = E(y. Ix. ,<f>.) -
<f>

. + k. /S . (1.1)
•'it' 1^1^ ^-'it' it^i ^x it^o

where p is a Kxl vector of unknown parameters. Equation (1.1) incorporates

a linearity assumption and strict exogeneity of x. conditional on the latent

variable 4> . ; see Chamberlain (1984) for further discussion. Even though

2
additional assumptions -- in particular, y(y.\x.,4>.) = a 1 -- are typically

imposed in carrying out inference after fixed effects estimation, assumption

(1.1) and standard regularity conditions are sufficient for the fixed effects

estimator to be consistent and asymptotically normally distributed. Thus,

the fixed effects estimator is robust to conditional heteroskedasticity

across individuals, as well as to serial correlation across time for a

particular individual.

As noted by Chamberlain (1980), the fixed effects estimator is also the

conditional maximum likelihood estimator (CMLE) under the additional



assumption

yilx..^, -NC^^j^+x.^^.a^I^). (1.3)

where j (1,1,...,!)' is Txl . The fixed effects estimator of /9 can be

shown to maximize the log- likelihood based on the density of y. conditional

T

o'^ Z y- . X- and 4> . , which turns out to be independent of <;i. . The

consistency of the fixed effects estimator under (1.1) can therefore be

interpreted as an important robustness property of the quasi-conditional

maximum likelihood estimator (QCMLE) of P .

Unlike linear models, little has been written on distribution- free

estimation of nonlinear unobserved effects models. Chamberlain (1980,1984)

analyzes a fixed effects logit model, Hausman, Hall, and Griliches (1984)

(hereafter, HHG) consider a variety of unobserved effects models for count

panel data, and Papke (1989) estimates count models for firm births for a

panel of states. All of these applications rely on the method of conditional

maximum likelihood, where a sufficient statistic (the sum of the binary or

count variable across time) is conditioned on to remove the unobserved

effect. As far as I know, the robustness properties of these CMLEs to

misspecification of the initially specified joint distribution have not been

investigated. It is important to see that, even though the resulting

conditional density (e.g. the multinomial) is typically in the linear

exponential family (LEF) , the robustness of the QCMLE in the LEF, e.g.

Gourieroux, Monfort, and Trognon (1984) (hereafter, GMT), cannot be appealed

to. This is because, except in special cases, the expectation associated

with the LEF conditional density is misspecified if the initial joint

distribution in the unobserved components model is misspecified.

For models of nonnegative variables -- in particular models for count



data -- it would be useful to have a class of estimators that requires

mininial distributional assumptions, while further relaxing the first two

moment assumptions appearing in the literature. The conditional MLE approach

is inherently limited by its reliance on a completely specified joint

distribution. A new, distribution- free approach that nevertheless eliminates

the unobserved effects for a broad class of models is needed. This paper

develops the notion of a conditional linear predictor (CLP) , and shows how

CLPs can be used to eliminate individual effects in certain nonlinear

unobserved effects models.

Section 2 introduces the model that motivated this research, and shows

how the unobserved effects can be removed by computing an appropriate CLP.

The conditional mean and variance assumptions are substantially more general

than those implied by the most flexible negative binomial specification of

HHG. In particular, the model allows not only for an individual effect in

the mean, but it also allows for individual under- or overdispersion that can

be unrelated to the mean effect. Independence across time is not assumed,

and moments higher than the second are unrestricted.

Estimation of conditional linear predictors, which is a straightforward

application of generalized method of moments (Hansen (1982)), is covered in

section 3. Section 4 discusses specification testing in the context of CLPs.

Section 5 analyzes the model of section 2 in detail, and suggests several

consistent and asymptotically normal estimators. In particular, the

multinomial QCMLE used by HHG for the fixed effects Poisson model is shown to

be consistent and asymptotically normal much more generally.

Section 6 briefly covers a multiplicative unobserved effects model where

the conditional variance is proportial to the square of the conditional mean,



as occurs in gamma and lognormal regression models. Section 7 outlines how

serial correlation, conditional on the unobserved effects, can be

accomodated.

2. Motivation: An Unobserved Effects Model for Count Panel Data

whe

Let ( (y. ,x. ,<^. ) : i-1 , 2 , . . . ) be a sequence of i.i.d. random variables,

re V. « (v. , , . . . ,
v.„)' is an observable Txl vector of counts, x. =

(x' ,x' , . . .
,x' )' is a TxK matrix of observable conditioning variables (x.

is IxK , t-l,...,T), and
<i>

. is an unobservable random scalar. The fixed

effects Poisson (FEP) model analyzed by HHG assumes that, for t-1 T,

^it'^'i-'^i
~ Poisson(^^/i(x^^,^^)) (2.1)

and

y. ,y. are independent conditional on yi.,4>., t ?^ r, (2.2)

where

E(y.Jx.,^.) = E(y.^|x.^,^.) = ^.m(x,^.^^). (2.3)

and y3 is a Pxl vector of unknown parameters. Actually, HHG take n(x P) =

exp(x. yS), but there is no need to use this particular functional form.

However, it is convenient to choose fi so that ^(x. ,P) is well-defined and

positive for all x. and fi. Assumptions (2.1) and (2.2) incorporate strict

exogeneity of x. conditional on 6., independence of y. and y. conditional

on X. and
<f>

. , and the Poisson distributional assumption.

If a particular functional form for E((i.lx.) is specified, then
1

' 1

estimation of p can proceed under (2.3) only; further assumptions on

D(y . |x. ,ijii
.
) are not required. Equation (2.3), a model for E(4>.\x.), and the

law of iterated expectations can be used to obtain E(y.|x.) as a function of

and other parameters. For example, if /i(x. ,/3) is specified to be



exp(x /3) , one might also assume that

EC'J^^lx^) - exp » + y X. A
o ^, It ot

t-1

for Kxl vectors X , t-l,...,T. However, in many cases one does not wish to
ot

be so precise about how 6. and x. are related.

As an alternative to specifying E(<f>.\x.) (or D((^.|x.)), HHG show how

(2.1) and (2.2) can be used in Andersen's (1970) conditional ML methodology
T

(see also Palmgren (1981) for the following derivation). Let n. =
Y, Y

^ t-1
^^

denote the sum across time of the explained variable. Then HHG show that

y^|n^,x^,,?S^ - Multinomial(n^,p^(x^,/3^) p^(x^,^^)) (2.4)

where

P,(x,./3^) .Mx,^,/3^)/[Zm(x,^,/^,)]. (2.5)

r=l

Because this distribution does not depend on
(f>

. , (2.4) is also the

distribution of y. conditional on n. and x. . Therefore, B can be estimated^1 11 ,0
by standard conditional MLE techniques. For later use, the conditional

log- likelihood for observation i, apart from terms not depending on /3, is

I (P) = I y. log[p (X ,^)

t=l
(2.6)

Because the multinomial distribution is in the LEF, the results of GMT

imply a certain amount of robustness of the QCMLE. If (2.4) holds then

E(y. |n.,x.) = p (x. ,5 )n.

.

^it' i' 1^ *^t 1^0 1
(2.7)

Conversely, it follows by GMT that, if (2.7) holds, then the QCMLE is

consistent and asymptotically normal, even if the multinomial distribution is

misspecified. Other than the FEP model (2.1) and (2.2), there is at least

one other interesting case where (2.7) holds. Let a. and 7. be unobserved



individual effects. If

y. |x.,Q.,7. - Necative Binomial (q .ii(x. ,B ),-y.) (2.8)
'it' 1 11 ^

1 it^o 1

and

y. ,y. are independent conditional on x.,q.,7., t >^ r, (2.9)
'it'-'ir ^ i' i' 'i'

then (2.7) can be shown to hold. By GMT, the QCMLE based on the multinomial

distribution provides consistent estimates of P under (2.8) and (2.9). This

is useful but still somewhat restrictive.

A robust approach consists of specifying at most a couple of low order

conditional moments. Let d) . and (p. be scalar unobserved effects. A strictly11 '

weaker set of assumptions than (2.1) -(2. 2) and (2. 8) -(2. 9) is

E(y.^|x..<^..^.) -= '?^iM(x.^,^^) (2.10)

V(yiti'^i'^i''Pi) = Pi^^yitl^'i'^i'^'i^ ° "Pi^i^^^it'^o^
^^-^^^

CV(y^^,y^^|x^,<^.,^.) =0, t ^ r. (2.12)

Equations (2 . 10) - (2 . 12) specify the first two moments of y. conditional on x.

and 4> . , and these are more general than the first two moments implied by

(2.1) -(2. 2) (cp. = 1) and as general as the first two moments implied by

(2.8)-(2.9) i4>. ^ a./y., cp. = I + I/7.). Although (2.12) assumes zero

conditional covariance, independence of the components of y. conditional on

X. , (^ . , and cp . is not assumed, nor is the distribution assumed to be Poisson,
1 1 1

•

Negative Binomial, or anything in particular.

The primary question addressed in this paper is: In models such as

(2 . 10) - (2 . 12) , how can
<f>

. and ip. be eliminated, so that B can be estimated?11 o

One answer is really very simple. Define the sum of counts, n. , as above.

Then, as defined in section 3, the linear predictor of y. on (l,n.)'

,

conditional on (x. ,(f> . ,ip.)
, is given by



L(y^^|l.n^;x^,^^.<p^) - E(y^Jx^ ,^^ ,<,. )

+ [n^ - E(n^|x^,(j!.^,(p^)J

V(n.|x.,^.,<p.)

E(y,,|x.,^..<p.)

v(y.j.|x.,.^.,<p.)

V(n. Ix. ,4> . ,(p.)
1

' 111

i'^ it^o T ^1 "^^ 1 XX o >

y <p.(j!>.^(x. ,/3 )^,11 ir '^o
r=l

r-1

n.. (2.13)
T i'

I m(x. ,^ )

r=l

There are a few points worth noting about this derivation. First, (2.13) is

generally not the conditional expectation E(y.
|
n. ,x. ,

(ji . ,!p. ) , as was derived

under (2.1) and (2.2) or (2.8) and (2.9). Thus, a class of estimators must

be constructed to account for the fact that (2.13) represents

L(y. ^ 1 1 ,n. ;x. ,(i. ,(p. ) , but not necessarily E(y. I n. ,x. ,(i. ,(p. ) . Second, as is
•'it' i' I'^i'^i'' ^ ^-^it' 1 111

desired, this conditional linear predictor does not depend on (j) . or <p. .

Third, in this example, L(y. 1 1 ,n. ;x. ,(i. ,(p. ) = L(y. I n. ;x. ,ii. ,(p. ) , so thatf '^it' ' i' I'^i'^i^ ^-^it' i' I'^i'^i

unity could have been excluded from the projection set. However, knowledge

of this equality expands the type of orthogonality conditions that can be

used in estimating ^ , and leads directly to the robustness result for the

multinomial QCMLE.

I return to this example in section 5. The next two sections cover

estimating and specification testing in the context of conditional linear



predictors

.

3. Estimating Conditional Linear Predictors

This section defines and discusses estimation of conditional linear

predictors. Unsurprisingly, intuition about linear predictors in an

unconditional setting generally carries over to the conditional case. Let y

be Jxl , z be Kxl , and w be Ixl. In what follows, z may or may not contain

unity as one of its elements. This distinction turns out to be important in

the applications. In section 5, unity can and should be included in z ; in

the section 6 example, unity must be excluded from z.

Subsequently, without stating it explicitly, an expectation is assumed

to exist whenever it is written down. Define the following conditional

moments

:

Zy^(w) = E(yz' |w). S^^(w) - E(zz' |w). (3.1)

Assume that S (w) is positive definite with probability one (w.p.l.). The

following definition holds only w.p.l., but this is left implicit throughout.

DEFINITION 3.1: Let y, z, and w be defined as as above. The linear

predictor of y on z, conditional on w, is defined to be

L(y|z;w) - r^^(w)2^^(w)z (3.2)

- C^(w)z.

where C (w) is the J x K matrix
o

C (w) ^ Z (w)2"^(w) .

o yz zz

Note that L(y|z;w) is always linear in z, but is generally a nonlinear

function of w. When the context is clear, L(y|z;w) is simply called a



conditional linear predictor (CLP). The difference between y and its CLP has

zero orthogonality properties that are immediate extensions from

unconditional linear predictor theory.

LEMMA 3.1: Let y, z, and w be as in Definition 3.1. Define

u E y - L(y|z;w) - y - C (w)z. (3.3)

Then

E(uz' |w) - 0. (3.4)

PROOF: uz' - [y - C (w)z]z' - yz' - C (w)zz'
, so that

E(uz' |w) = E(yz' |w) - C (w)E(zz' |w)

= 11 (w) - S (w)e"^(w)S (w)
yz yz zz zz

= 0.

The next corollary, which motivates the class of estimators considered,

follows immediately by the law of iterated expectations.

COROLLARY 3.1: Let y, z, w, and u be as in Lemma 3.1, and let D(w) be

a JK X L random matrix. Then

E[D(w)' (z ® I )u] = E[D(w)'vec{uz' )] = 0. (3.5)

Suppose now that C (w) = C(v,8 ), where C(v,8) is a known function of w

and the Pxl parameter vector ^ e 6. Then, for a matrix function D(w) as

defined in Corollary 3.1, 8 solves (perhaps not uniquely) the system of

equations

E[D(w)'(z I^)(y - C(w,B))] = 0. (3.6)

Equation (3.6) can be exploited to obtain a variety of consistent estimators

of 8 .

o

For the remainder of this section, let { (y .
, z .

,w. ) : i=l , 2 , . . .
) be an



i.i.d sequence, where y. is Jxl, z, is Kxl , and w. is Ixl. Extension of the
1 i 1

subsequent results to heterogeneous and/or dependent situations is fairly

straightforward but notationally cumbersome. The available sample size is

denoted N.

Assume that for a known function C(w.,^),

L(yJZi;w.) - C(w.,^^)z.. (3.7)

In the applications, not all of the vector w. is observed (w. ^ (x.,4>.,ip.) int-r ^ 111 1

(2 . 10) - (2 . 12) ) , and C(w.,6 ) does not depend on the unobserved elements. For
1 o

notational simplicity, this section treats w. as entirely observed. When w.
1

-^

1

contains unobservables , the orthogonality conditions constructed below are

necessarily restricted to functions of the observables

.

The class of estimators is assumed to solve a first order condition

asymptotically. To specify the estimating equations, let D(w.,^,7) be a JKxP

matrix depending on w. , 6, and possibly a vector of nuisance parameters, 7 e

A

r. Assume that an estimator 7., is available such that
N

/N(7„ - 7 ) = (1) for some -y G T

.

(3.8)
N p

Then, 9 is assumed to satisfy

i=l ^

in shorthand,

1=1 ^

A

where u.{e) = y. - C(w.,e)z.. As further shorthand, let u. = u. (^ ), D. =1-^1 11 • 1 1^01
A A A A A

D.(fi 7 ), and u. = u.(S^J. In all of the examples in this paper, 5_, is aniNN iiN N

exact solution to the P equations

10



N

I D.(^7j^)' [z. ® Ij]"i(^) - 0, (3.10)
i-1

so that (3.9) is trivially satisfied.

A

The weak consistency of 8,, for 6 hinges on a standard uniform weak law
N o

of large numbers and a suitable identification condition. Identification

requires that 6 is the only element of

y i= 15 e 6: E[D. (i9,7*)' (z. ® I )u.(e)] = 0). (3.11)

By Corollary 3.1, 6 is an element of if; as usual, this must be strengthened

to the assumption that 8 is the unique solution to the asymptotic

orthogonality condition.

A

Establishing the asymptotic normality of /N(5 - 8 ) is also relatively

straightforward, but a little algebraic care is required to show that the

natural estimate of the asymptotic variance matrix of /N(5„ - 8 ) is valid.
•^ No

The slight complication arises because E(u.lw.,z.) ^ necessarily; (3.7)

guarantees only that E(-u.z'. |w.) = 0.

A

The first step in deriving the as}Tnptotic distribution of /N(5 - 8 ) is

standard; it amounts to showing that the asymptotic distribution of

/N(5 - 8 ) does not depend on that of /N(7 - 7 ). This follows by a

mean value expansion:

1=1 1=1

* ^
-A-

+ E[ (u'. {z'. ® I ) ® I )3vec(D. (8 ,7 )' )/a7]/N(7„ - 7 ) + o (1) .II J p 1 o N p

But

so that

E[ (u'. (z'. ® I ) Iw. ]
= 0,11 J 1

11



^"''il'i^'N-^N)'[^i«^.]^(^>

N
1/2

- N"^'^ I D.(5^,7 )' [z. ® Ij]u.((?j^) + o (1). (3.12)

i-1

Therefore, define the Pxl "score" vector

s.(^) - D.(5,7*)' [z^ ® Ij]^i(^). (3.13)

so that E[s.(^ )|w.] - by Corollary 3.1. Another mean value expansion

gives

N
-1/2

O (1) - N"^'^ I s.(5^) + E[H.(^^)]/N(^^ - e^),

i=l

where 11.(8) = V„s.(e) is the PxP derivative of s.(9). Provided that

A ^ -E[H.(i9 )] is nonsingular, (3.14)

A

/N(^ - S ) has a familiar asymptotic representation:

1=1

Letting

B = E[s. {& )s.{e )'
]O "^ 1 O 1 o

= E[D.(e ,7*)'[z. © I ]u.u'.[z'. ® I ]T>.{e ,7*)], (3.15)lO 'l J-^ll'-L JIO
it follows that

/N(^„ - 9 ) ~ N(0,A B A ). (3.16)No o o o

This discussion is summarized with an informal theorer

12



THEOREM 3.1: Under (3.7), (3.8), (3.9), (3.11), (3.U), and standard

regularity conditions, (3.16) holds. "

The matrix B is easily estimated by a standard outer product of the

*' C< ^ ^>- A ><score

N

^N^^"\^/i(''N-^N^^^^-V' (3-1^)
i-1

N A A

- N'-*" y D. (^„,7v,)' [z. ® I ]u. (e,Ju. (^^J' [z'. ® I ]D. (^„,7v.).^, 1 N 'N^ ' 1 j^ 1 N 1 N ^1 j' X N' 'N
1-1

-1 iN A A A A

s n" y D'. [z. ® I lu.u: [z-. I id.
, (3.18).^,1^1 J^ll^L J^i' ^ ^

1-1

which is at least positive semi-definite. The most convenient estimator of

A excludes terms depending on the derivative of D.(^,7 ) with respect to 6.

But

E.(e) = -D.(^,7*)' [z. ® I
]
[z'. ® I ]VC.($)

1 1 ' ' 1 j-^ ^ 1 J ^ 1

+ {u.(,e)' ®i){(z'. ®i)®i )avec[ 0.(^,7^)' ]/de

,

1 P 1 J P " 1

where V„C.(^) ^ dvec[C . (e)]/d6 is JK x P and avec[D. (5 ,7''")' ]/a^ is JKP x P.oil 1

Therefore,

Under (3.7) ,

-H (^ ) =D (5 7*)'[z. ®I][z' ® I ]V C (5 ) (3.19)
L O 10 1 Jl JplO

- (u. (6 )' (z'. ® I ) ® I )avec[D. (e ,-y*)' ]/de .10 1 J p 10

E[u.(^ )' (z'. ® I ) Iw. ] =101 J ' 1

and, because avec[D.(e ,7 )']/d6 depends only on w.

,

A = EfTi.(6 ,7*)'[z.z'. ® I ]V C.(5 )"]
. (3.20)

o ^10^11 j' e 1. o '

It follows that a consistent estimator of A is simply

13



N .

I
i-1

\- ''\^,^'i'^n® ^a^^^^i-
(^-^^^

Inference is carried out on B by treating 5^, as normally distributed with

mean ^ and variance
o

V^r^>-' (3.22)

Several special cases can be cast in terms of (3.9). One useful class

of estimators is multivariate weighted nonlinear least squares (MWNLS).

A A

Given a JxJ symmetric, positive semidefinite matrix G(w.,7.,), choose ^., to

solve

N
min I [y - C(w , 5 )z ] ' G(w 7 ) [y - C(w ,^)z ]. (3.23)
^ee i=l ^ 1 :n 1 11

Note that the weighting matrix G(w.,7) is allowed to depend on w. but not on
A '

z . Here, 7 is an initial estimator. The MWNLS estimator falls under

Theorem 3 . 1 by choosing

D(w.,^,7)' - [V^C^(w.,^)'G(w^,7)l • |V^Cj^(w.,5)'G(w^,7)], (3.24)

where V C(w.,^) has been partitioned as

V^C(w.,&)' - [V^C^(w.,^)'
I

• |V^C^(w.,^)'].

and ^^C^(w^,e) is J x P, k=l K. Then

D(w ,5,7)'[z ® l]n{e) =VC(w ,5)'[z. ®G(w 7)]u.(e)
-L IJl (71 J. 11

= V C(w. ,5)' [z. I ]G(w. ,7)u. (5) .

In terms of more familiar notation, let

m.(e) s m(w.,z.,fi) = C(w.,5)z. (3.25)
1 11 11

denote the "regression" function (but recall that m(w.,z.,5 ) 7^ E(y.|w.,z.)

necessarily) . Then

14



so that

and

M.(^) - V^m^CfJ) - [z'. ® l^]V^C^(n, (3.26)

s.(^ ) - M.(fi )'G (7*)u (3.27)10 10 1 1

A - E[M.(5 )'G. (7*)M.(5 )]

.

(3.28)
O 1 O 1 1 o

The consistent estimators of A and B are simply
o o

1-1 1-1
A ^ N y V C'. [z. ® I ]G.[z'. ® I ]V n. - N" X M'.G.M. (3.29)
N .^,^1^1 J^i^i J^^l .'^,111

and

A -INaaAAAA -INaA
B„ = n" y M'.G.u.u'.G.M. = N" y s.s'.

,
(3.30)

N .^.,111111 ."^^ 11
1=1 1=1

which are the familiar robust formulas from MWNLS theory when estimating

conditional expectations. Thus, even when estimating conditional linear

predictors, simple positive definite estimates of A and B are available.

Only rarely does it happen that

E(u.u'.lw.,z.) = [G(w^,7*)]'\ (3.31)

A A

in which case A = B and either A,, /N or B„ /N can be used to estimate the
o o N N

asymptotic variance of 6 .

The generalized method of moments estimators studied by Hansen (1982)

are also covered by Theorem 3.1. Let L(w.,(/i) be a JK x M matrix depending
A -

,
A

on w. and a nuisance parameter <^ . Assume that /N((/> - (^ ) = (1). Let —

denote a symmetric, positive semi-definite matrix estimator such that

/N(- - :i ) = (1), where H is a symmetric, positive definite matrix. In

A

the current context, a GMM estimator 8^, solves
N

min T (8)

8ee

15



where

r^(n N"' I L(w^,^^)' [z. ® Ij]u.(fi) E^ N"' I L(w. ,.^j^)' [z^ ® Ij]^^(B)

i-1 ' *- i-1

(3.32)

Under differentiability assumptions, this estimator can be shown to be a

special case of Theorem 3.1. The first order condition solved by 9 is

y L'. [z.z'. ® I ]VC.(e) S„ y L'. [z. ® I ]u.(^)

'-i-l -' *-i-l

Letting

^^

N

N' y L. (,?!.„)' [z.z'. ® I ]VC.(^^J
1=1

(3.33)

which is an M X P matrix, 6 equivalently solves

,-1/2
N

1=1

Therefore, in the notation of Theorem 3.1, let

D(w.,;^) . L(w..^^)-^^.

(3.34)

(3.35)

where 7 = (iji'
,
(vech(- )

) '
,
(vec(R )

) ' )'
; this choice of D does not depend on

Although the GMM estimator is consistent and asymptotically normal for a

A

variety of weighting matrices H , the efficient estimator -- given the choice

of L(v.,4> )
-- is always available. This is the minimum chi-square

A

estimator, obtained by choosing H to be a consistent estimator of

{E[L(w 4>*)' [z ® I ]u u'. [z'. ® I ]L(w ,/)]]'^
X. J. xi J- X. X. J -L

(3.36)

Subsequently, r. is assumed to be chosen in this way. This requires an

initial, consistent estimator of 8 , such as a MXJNLS estimator.
o
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The asymptotic variance of /N(^., 6 ), where ^., now denotes the minimumNo N

chi-square estimator, is A - B , because A and B are both equal to^ o O

* _* * *
R ' r, R , where E is given by (3.36) and

R* - E[L(w.,/)' [z.z'. © IJV^C(w.,fi^)].

A AAA
The asymptotic variance of 6 is estimated by (R^H R^) /N.

The problem of estimating conditional linear predictors also fits into

the framework of Chamberlain (1987) , who derives the efficiency bound for

estimators derived from conditional moment restrictions. For CLPs

,

the conditional moment restrictions available for estimating 6 are given by

E[(y. - C(w^,5^)z.)z'.|w.] =

or, in vector notation,

E[(z. ® I )(y. - C(v.,9 )z.)|w.] =
1 Jl lO 11

(a total of JK conditional moment restrictions) . Letting

2 (w.) ^ E[(z. ® I )u.-u'.(z'. ® I )|w.]
1 ^1 Jill J ' i'

and

^f (w ) - E[(z z; ® I )|w ]V C(w ,^ ),01 11 JlPlO
the lower bound is obtained from Chamberlain (1987, equation (1.11)):

{E[* (w.)'S"\w.)* (w.)] }"'".

1 O 1 O 1

To achieve this bound, one can proceed as in Newey (1987) and

nonparametrically estimate 2 (w.) and E[(z.z'. ® I )|w.]. Although studying

this kind of procedure is beyond the scope of this paper, the lower bound

calculation at least isolates which terms need to be nonparametrically

estimated.
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4. Specification Testing

Specification tests can be derived using the approach of Newey (1985) .

If A(v . ,6 ,-y) is a JK X Q matrix depending on w. , 8, and nuisance parameters

7, a general class of tests is based on the sample covariance

i-1

Under H_ , the following expansions are easily seen to hold (for similar

reasoning, see Wooldridge (1990)):

n"''J^^^^-^N'^n)'[^® ^aJ^(V•

^ " *
'

'^

= N"''^ X A(w.,^j^,7 )' [z. ® I_^]u^(^ ) + o (1)
i=l P

N
^ 'i

= N"^''^ I A(w. ,6 ,7 )' [z. ® I ]u..^ ' 1 o' ' ' 1 J-' 11=1

- E[A.(^^.7*)'[z.z'. ® IJV^C.(^^)]/N(^^^ - ^^) + Op(l)

N ^ N ^

-^-"\l^,(S^,y) - K'^A^'ls (e^,-y) + 0(1)
1=1 i=l ^

N
= N"^'^ I lA.(e ,-y'^)

- Ti.{e ,7*)A"^K )' [z. ® I ]u. + o (1)
.^, 1 o' ' ' lo'^oo'-i j-'i p^'

where A is given by (3.20),

¥'.(^^,7''') - A(w. ,^^,7*)' [2^ ® I^]u.
,

and

K ^ E[V n.(^ )' [z.z'. ® I ]A.(6 ,7*)].
O ^lo'^ll J^lO

Thus, let

1=1

18



and

-

1

^i
- (Ai - D.A^K^)'[z. ® Ij]u.. i-1 N (4.3)

2
(note that ^ is a 1 x vector). A valid test statistic is obtained as NR
^ ^ i

^ u

- N - SSR from the regression

A

1 on ^., i-1 N. (4.4)

Under the null hypothesis

Hq: E[u.(e^)z'.|w.] - 0, (4.5)

a 2 *
N - SSR - Xp, .

provided there are no redundant columns in A. (5 ,7 )• As a

special case, this procedure covers a robust, regression-based Hausman test

for comparing the multinomial QCMLE and MNLS in the nonlinear unobserved

effects model (2 . 10) - (2 . 12) . This test is discussed in detail in section 5.

If the minimum chi-square estimator is used, where the number of

orthogonality conditions M is greater than the number of parameters P, then

the GMM overidentification test is available from Hansen (1982) . The test

statistic is simply N times the value of the minimum chi-square objective

function. Under (4.5),

A

where t (6) is defined in (3.32) with appropriate choice of E!

5. Application to Count Models with Individual-Specific Dispersion

This section applies the theory of sections 3 and 4 to the model

introduced in section 2. Nothing of what follows relies on y. being a vector

of counts, but the example is motivated by the count models of HHG . Let

{ (y . ,x. ,<f> . ,ip .) : i_=l 2 , . . . } be a sequence of i . i . d . random variables . As in
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section 2, y is Txl , x is TxK , and these are observed. 4> . and ip are

unobserved, scalar random variables representing the individual effects. For

clarity, the model introduced in section 2 is reproduced here. For

t-1 T,

E(yiJx.,^.,<p.) - .^./.(x.^,^^) (5.1)

'it' 111 ^1 •'it' 1^1 1
fj^r^f-\ It '^o

CV(y.^,y.^|x.,<6.,vp.) =0, t ^ r. (5.3)

This model allows for individual mean effects as well as a separate,

individual dispersion, with variance to mean ratio

V(y.j.|x.,^.,<p.)/E(y. Jx.,^.,cp.) = .p.. (5.4)

The addition of (p. allows for under- or overdispersion, depending on the

individual. Assumptions (5.1), (5.2), and (5.3) are more flexible than the

first two moments of all of the fixed effects models used by HHG. The FEP

model imposes cp. = 1. The fixed effects negative binomial (FENB) model of

HHG imposes cp. = 1 + c^.. Not only is underdispersion ruled out for all

individuals, but the amount of overdispersion is tied directly to the mean

effect. In addition, (5.3) is weaker than independence, and no

distributional assumption is made.

Section 2 showed that the linear predictor of y. on (l,n.)'

,

^ 'it ^ ' 1^ '

conditional on (x. ,ii . .cp. ) , is free of d) . and cp.. In vector notation,111 1 1

L(y^|l,n^;x.,^.,cp.) = p(x.,^^)n^, (5.5)

where p(x. ,/S) denotes the Txl vector with t element

M(x.^,^)

Pt(x.,^) -
-J

. (5.6)

Im(x.^,^)
r=l

20



Equation (5.5) implies orthogonality conditions of the form

E[D(x.)'
(
(l,n.)' ® I )u. ]

- 0, . (5.7)11 Tl

where D(x.) is any 2T x L matrix function of x., and u. ^ v. - p(x.,^ )n.

.

^i' •' 1 iiioi
This allows for a variety of method of moments procedures, as well as some

simple, well known estimators. For example, Theorem 3.1 implies that the

A

MNLS estimator fi ,
which solves

N

min I (y - p(x ,^)n )'(y. - p(x ,^)n ), (5.8)
^GB i-1

ill 11.
is consistent for and asymptotically normally distributed. The asymptotic

variance of /N(5„ - fl ) is A B A , and consistent estimators of A and B
N o o o o

are given by

N

\-N-\lnW.Vp. (5.9)

and

A,
T

AAA A

B^- = N y nfv^p'.u.u'.V.p.
,

(5.10)
N .^^ 1 B^:l 1 1 6^1.'

1=1

where V p. = V p(x. ,^ ) is the TxP gradient of p(x. ,^) evaluated at . Th

A A

is easily extended to MWNLS with TxT weighting matrix G. = G(x.,7 ). The

MWNLS estimator solves

N

I
/3gB i=l

is

min I (y. - p(x. ,^)n^ )' G. (y^ - p(x^,/3)n.), (5.11)

and A and B are easily estimated by
o o ' '

IVi AAA
A,, ^ N y nTV^p'.G.V n. (5.12)

1=1
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and

A 1^ AAAAA A

B^, - N y n^V„p'.G.u.u'.G.V„p. . (5.13)
N .'^^ 1 B^i 1111 B^r

1-1

Even more interesting is that the multinomial QCMLE (or FEP QCMLE) is

consistent under only assumptions (5.1) -(5. 3). This is remarkable given that

the conditional multinomial distribution was derived from a Poisson

distribution with only one unobserved effect, i.e. ep. ^ 1 (see section 2).

Moreover, the distribution can be very different from the Poisson, and

independence of the elements of y. conditional on {-x.. ,<f) . ,ip .) is not assumed.

To see that the multinomial QCMLE is covered by Theorem 3.1, note that

the gradient of the quasi-log likelihood (see (2.6)) is

s,(^)' - ^i.(P) = I YiJV p^(x..^)'/p,(x,,^)]
^ t=I ^

T
= I [V^P^(x.,^)'/P^(x..^)](y.j. - p^(x.,/3)n.) (5.14)

- V^p(x^,^)'W(x.,^)(y. - p(x.,^)n.;

- V^p(x.,^)'W(x.,y9)u.(^), (5.15)

where W(x. ,^) s [diag{p (x. ,^3) p (x.,;9))]"\ Equation (5.14) follows

T
from the fact that ^ p (x.,^) s 1 for all p. Because z'. = (l,n.), (5.15)

t=l ^ ^ ^ ^

is seen to be of the form (3.10) with D.(/3)' ^ [V p. (/3)' W. (^) |
O] . If the

A

FEP model is maintained, the estimate of the asymptotic variance of y9 ,

obtained from the estimated information matrix, is
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-1

y V m'.v'V„m.
T /3 L 1 ;3 1

1-1 f- ^^

-1

(5.16)

where m. (/3) = p.(^)n. would normally be the conditional mean function

A A A

associated with the multinomial distribution, V^m. s V .m. (iS.,) = V p . (/3,_,)n.
,

/9 1 ^ 1 N ^1 N 1
A .^ A A

and V^ ^ V(n^,x^,;3^) - diag{p^^ (;3^)n^
PiT^^N''"i'"

Expression (5.16) is

familiar from standard likelihood theory involving the multinomial

distribution.

Unless the original Poisson model holds, A /N produces inappropriate

AAA
Standard errors. The robust form is A B^ /N, where

A A A

\ - N-\I V p(x.,^^)'W(x.,^^)u.u'.W(x..^^)V p(x. ,^^
1=1

IN A A A A A A

= N'^ y V„m'.v"^u.u'.v"V m. .

.-^^ySll 111 /3i
1=1

(5.17)

The estimator A^ ^vAm /^ is robust to arbitrary serial correlation in

{u. :t=l,2, . . .
,T) . Note that, by definition, }] u. s 0, so that the u.

t=l

might generally be expected to exhibit negative serial correlation. This is

the case under (2.1) and (2.2). From McCullagh and Nelder (1989, p. 165) the

correlation between u. and u. , conditional on (n.,x.), is
It ir' ^ i' -l'

'

•Pit^^o^Pir^^o^/fPit^^o^'l-Pit^^o^'Pir^^o^'^-Pit^^o)
1/2

(5.18)

This particular negative correlation, which is used implicitly in the

^ A

estimator A^ /N of the asymptotic variance of /3 need no longer hold under

(5.1)-(5.3). In fact, it is no longer possible to compute the correlation

23



between u. and u. , conditional on (n.,x.), under assumptions (5.1)-(5.3).
It ir' 11 ^

Thus, the robust covariance matrix estimator should always be computed; this

can produce standard errors smaller or larger than those obtained from

(5.16).

The robustness of the QCMLE to distributional misspecification suggests

a research methodology different from that used by HHG. They compute a

specification test for the FEP model that checks whether the data support the

serial correlation pattern (5.18). HHG properly view a violation of (5.18)

as a rejection of the original Poisson specification. However, this section

has shown that the estimates of B in model (5.1) -(5. 3) are still consistent
o

and asymptotically normal, whether or not the correlation structure (5.18)

holds. Rather than testing whether the multinomial QCMLE estimates are

consistent for p , the HHG test looks for departures from the multinomial

distributional assumption. A test of model (5.1) -(5. 3) should be based on

the testable implication that the linear predictor of y. on (l,n.)'

,

conditional on {-x.. ,<i> . ,(p.) , is of the form (5.5). Because QCMLE and MNLS are

both consistent for fi under (5.5), a robust form of Hausman's (1978) test

for comparing the two estimators is natural. Here I focus on a regression

form of the test that requires computation of the QCMLE only, and results in

a particularly simple research methodology.

The regression-based Hausman test is a special case of the tests

discussed in section 4, but it is more directly obtained from Wooldridge

(1991). Because the Poisson model is the nominal distribution for count data,

it makes sense to construct the robust test to be optimal if the Poisson

model is true, and the tests in Wooldridge (1991) are constructed in thisAAA A

manner. Let u. , V m and V. be defined as above, evaluated at the QCMLE i3,,

.

1 ;3 1 1 '^N
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-1/2 „ - „-!/'
Define the weichted quantities u. - V. 'u., V^m, - V. V m

. , and A.
'^ ^ iii/3ii/3i 1

V 'v m. (this lambda is related, but not equal, to that appearing in section
i pi

A). The robust Hausman test is easily computed by first orthogonalizing A.

with respect to V„m. . Let E. be the TxQ matrix residuals from the matrix
^ Pi 1

regression

A. on V^m., i-l,...,N. (5.19)
1 pi

Then compute H ^ U - SSR from the regression

I on u'.E., i-1 N; (5.20)

under (5.5), H ~ Xq-

Because the moment assumptions (5.1) -(5. 3) encompass HHG ' s FENB model, a

rejection of (5.5) based on H necessarily implies misspecification of the

FENB specification. A rejection implies some failure of (5.1)-(5.3), so one

needs to work harder in specifying E(y. |x. ,(?ii. ,cp .) and V(y . \x. ,cf> . ,(p.) .

If the Hausman statistic fails to reject one might conclude that

the first two moments in the latent variable model are correctly specified

(this assumes that the Hausman test has power against interesting departures

from (5 . 1) - (5 . 3) ) . If the QCMLE estimates are reasonably precise, then one

could stop here. However, if (2.1) and (2.2) fail to hold, the QCMLEs could

(but need not) have large standard errors.

Before searching for a more efficient estimator, it is useful to have

direct evidence concerning the appropriateness of the multinomial

distribution; if E(y.|n.,x.) and V(y.|n.,x.) match the first two moments ofII 1 1 ' 1 1

the Multinomial(n. ,p (x. ,/3 ),..., p(x.,^ )) distribution, worthwhile

efficiency gains over the multinomial QCMLE are likely to be difficult to

realize. A comparison of the usual and robust standard errors provides some

guidance. A more formal test is HHG ' s serial correlation test for the FEP
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model. However, the form of White's (1982) information matrix test covered

by Wooldridge (1991) has some potential advantages. First, it imposes

correctness of only the first two conditional moments (in this case

E(y.|n.,x.) and V(y.|n.,x.)) under H_ , but it is asymptotically equivalent to

nonrobust forms which take the entire distribution to be correctly specified.

Second, it uses an estimate of the expected Hessian, A^ , in its construction.

Consequently, this test probably has better finite sample properties than

-HHG's outer product test; the latter is known to reject far too often in many

situations

.

The IM test for the multinomial model follows from Wooldridge (1991,

Procedure 4.1), with a slight modification due to the singularity of

E(u.u'. |n. ,x. ) . Let Ci(n. ,x. ,B) denote the TxT covariance matrix of the111 L 11
Multinomial(n. ,p (x. ,^) , . . . ,p (x. ,y9) ) distribution. The t diagonal element

of n(n.,x.,^) is n.p (x.,/3)[l - p (x.,^)] while the (r,t) element is

A A

-n^Pj.(x^,^)p^(x^,^). Let n^ ^ n(n^,x^,p^) and

A AA A A AA AAA
C- = {vec(u.u'. - n.))'[V. ©V.l'^A. - s-aT/Jv-,. (5.21)
1 11 I'-i i-'i iNN

where

A IN A A A A

J„ = N"^ y V^C. [V. ® V. ]"^A.
N .^^ B x'- 2. 1^ 1

1=1

A A

is P X Q, V n^(^) ^ avec{n^(^))/a;9 is T^ x P, and A. = A.(x.,/3^) is a T^ x Q

2 2matrix of selected linearly independent columns of the T x P matrix
A A

[V m ® V ra.]. The IM test statistic is IM = NR^ = N - SSR from the
P X p 1. u

regression

A

1 on |., i=l,...,N. (5.22)

Under the hypothesis that E(y.|n.,x.) and V(y.|n.,x.) match the first two
1

' 1 1 -^ 1
' 1 1

moments of the Multinomial(n. ,p (x. ,/3 ) , . . . ,p (x. ,y9 )) distribution, IM ~ x^-
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If the IM test rejects, the search for more efficient estimates can

proceed along two lines. First, one might estimate HHG's FENB model. But

HHG's FENB model imposes tp . - 1 + <^ . and, even if this restriction holds, the

FENB QCMLE apparently does not enjoy the robustness properties of the FEP

QCMLE. Because the quasi-score for the FENB cannot be expressed as in

(3.13), the FENB QCMLE is generally inconsistent for /9 unless (2.8) and

(2.9) hold with a. = 1. For example, if the FEP model (2.1) and (2.2) holds,

the FENB QCMLE is inconsistent for /3 . Consequently, the FEP QCMLE is

preferred to the FENB QCMLE.

A second approach is to construct a minimum chi-square estimator that is

more efficient than the multinomial QCMLE but is nevertheless consistent

under (5.1) -(5. 3). There are a variety of minimum chi-square estimators that

meet these criteria. Here I cover only one example, namely an estimator that

combines the orthogonality conditions implied by QCMLE and MNLS . In the

A

notation of section 3, Let (i„ = 5., be a preliminary consistent estimator of
N N

fi (typically the multinomial QCMLE). Define z. = (l,n.)',

L(x.,^^) . ^i^^^Vi^^N)

Vi^^N^

(5.23)

which is 2T x 2P, and

N

i=l
(5.24)

which is 2P x 2P. The residual function u. (fl) ^ y. - p.(fl)n. can be

expressed as u. (^) = y. - C.(^)z., where C. (^) = [0
|

p.(/3)] is T x 2. Note

that V C^(y9)' = [0
I

V p^(^)'], which is P x 2T.

Denote the minimum chi-square estimator by /3 . Then the asymptotic
^ AAA

variance of R is consistently estimated by (E/H R^) /N , where
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N .

R^, - N'^ y L'. [z.z'. ® I ]V^C,
,

1-1

The overidentification test statistic Nr (;9 ) (see (4.6)) is asymptotically

X under (5.5), and provides additional evidence on the appropriateness of

(5.1)-(5.3).

This section is concluded with a robust research methodology for count

panel data models:

(i) Estimate model (5.1) -(5. 3) by multinomial QCMLE. Compute the robust
A

standard errors for /9„

.

N

(ii) Compute the robust Hausman specification test as in (5.19) and

(5.20). If H rejects, conclude that (5.1)-(5.3) is misspecif led.

(iii) If the Hausman test in (ii) fails to reject, compute the

information matrix test as in (5.21) and (5.22). If the IM test fails to

reject, conclude that the multinomial distribution adequately describes

E(y.|n.,x.) and V(y.|n.,x.). The efficiency gains from minimum chi-square

estimation are unlikely to be worthwhile.

(iv) If the IM test in (iii) rejects, a minimum chi-square procedure

might produce noticeably tighter estimates. Compute the overidentification

test statistic as further evidence on model specification.

6. Application to Gamma-type Unobserved Components Models ^

This section briefly outlines how the CLP approach can be applied to

models where the conditional variance is proportional to the square of the

conditional mean. Some popular continuous distributions for nonnegative

variables, in particular the lognormal and the gamma, have first two moments

corresponding to this assumption. For t=l,...,T, assume that
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E(yi,|x,.^,) -^iM(x.^,^^) (6.1)

V(y^Jx.,^.) - -^[E(y,^|x..^.)]^ - ol[<^.,(..^,fi^)f (6.2)

CV(y. ,y. Ix. ,4,.) - 0, t r' r. (6.3)
It -^ ir 1 1

Assumption (6.1) is essentially the same as (5.1), while (6.3) corresponds to

(5.3). Note that only one unobserved effect, 4> . , is allowed. I do not know

2
how to allow the proportionality parameter a to vary across 1. Equation

(6.2) corresponds to what statisticians refer to as a "constant coefficient

of variation" model (e.g. McCullagh and Nelder (1989, chapter 8)) because the

ratio of the standard deviation to the mean is constant:

SD(y. Jx...^.)/E(y.^|x.,^.) = a^. (6.4)

As far as I know, there has been no work analyzing such models in an
|

unobserved components, panel data setting, with or without distributional

assumptions. This is probably because, when y. is a nonnegative continuous

random variable, mo»t researchers use log(y.^) in a linear fixed effects

model. But if interest lies in E(y. \>i.,4>.), (6.1)-(6.3) might be preferred;

additional assumptions about D(y. |x.,i^.) are needed to recover E(y. \x.,4>.)

from E[log(y.^)|x.,^.].

The conditioning that eliminates the individual effect d> . is more

T
restrictive than that used in section 5. Let n. = T Y. be as before.

t=l

Then, for each t, the linear predictor of y. on n. , conditional on
^ It 1

(x^,(?i^), is:

E(y. n.|x.,(^.)

L(yiJn ;x ,^ ) = '^ ^ ' ' n (6.5)
E(n^|x.,0.)

But

E(y.^n. |x.,^.) = CV(y.^,n.|x.,^.) + E(y
.

^ | x . ,
^ .

) E(n. | x. ,
^ .

)
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- V(yitl'^i.^i) -^ l^'^^'^it'^o^^^ ^ ^i'^^'^ir'^o)^
r-1

- 4>\

r-1

Similarly,

E(m|x^.?i^) - V(n^|x.,^^) + [E(n.|x...^^)

- <i>^

r-1 r-1

Therefore

,

L(y. |n.;x.,ii.) = p (x.,5 )n.
,'it' l' I'^l^ ^t^ i' o^ i'

(6.6)

where B = (B' ,a )' and
o o o

Pt^^'^) -

Note that

r=l

r=l r=l

X p (x. ,ff) =1 for all 9 .

t=l ^ ^

In terms of the vector y. , (6.6) is expressed as

(6.7)

L(y. In. ;x. ,(ji. ) = p(x.,5 )n.
,

l' 1 11 '^ 1 o 1
(6.8)

where p(x^,n = (p^(x^,e) p^(x.,e))'.

Although the right hand side of (6.8) is of the same form as (5.5),

there is an important difference. Under (6.1) -(6. 3), (6.8) does not also

represent L(y . 1 1 ,n. ; x. , i .
) . In fact, the CLP of y. on unity and n. depends

1 11 1 -^1 -^ 1

on cf) . ,
rendering it useless for estimating a and B . Taking z. = n. i

1 '^oo^ii
2section 3 restricts the class of consistent estimators for a and B .

o o

Nevertheless, there are plenty of orthogonality conditions of the form

in
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E[Dix^J^,t*)'nAy^ - P(x^.^^)nj) - (6.9)

2
to identify a and B .

Weighted MNLS estimators, which solve

N

min I ly - p(x. , 5 )n. )' G(x.
. 7j^,) (y^ - p(x.,e)), (6.10)

5ee 1-1

are generally consistent and asymptotically normally distributed. Further,

given one such estimator, it is straightforward to stack WMNLS orthogonality

conditions to obtain a more efficient minimum chi-square estimator. The

robust, regression-based Hausman test for comparing two WMNLS estimators

covered by Wooldridge (1991) is a special case of the tests in section 4, and

can be used to test the validity of (6.8).

7. Models with Serial Correlation

For some applications, the zero covariance assumptions (2.12) and (6.3)

might be too restrictive (although recall that these are conditional on

latent effects). For the model in section 6, it is straightforward to relax

the zero covariance assumption. In fact, (6.2) and (6.3) can be replaced

with the general assumption

V(y.|x.,^^) = ^^Q(x.,5^), (7.1)

where n(x.,5) is a TxT positive definite variance function. The conditioning

argument used in section 6 still eliminates 4> . . In fact, letting

n (x. ,5) denote the t"^ row of n(x. ,5) and j~= (1,1 1)', L(y. ln.;x.,i;6.)

is given by (6.6) with
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Model (6.1) and (7.1) allows for serial correlation and a variety of variance

functions. For example, a gamma- type model with constant AR(1) serial

correlation would take

n(x.,6^) - a^A(x^,y9^)R^(p^)A(x.,^^), (7.3)

where

A(x.,^^) = diag{M(x.^,/3^),...,/i(x..j,,^^)) (7.4)

and R„(p) is the TxT matrix with (r,t) element p . This model

maintains (6.2) but relaxes (5.3) to CV(y. ,y. Ix.,^.) —
^it 'ir' 11

p /i(x.^,/3 )m(x. ,P ) .

o It o ir o

Model (6.1) and (7.1) can also allow for serial correlation in

count-type models, but the individual dispersion is restricted in this case.

A model with constant AR(1) serial correlation chooses Q(x.,5 ) as in (7.3),
1 o

except that

A(x.,;3^) ^ diag{[M(x.^,;9^)]''' [m(x.^,/3^) ] ''')
. (7.5)

In terms of model (2 . 10) - (2 . 12) , (2.11) has been maintained and (2.12) has

2been relaxed at the cost of imposing <p. = a ch . (compare to the HHG FENB
° 1 1

assumption cp. =! + <(>.).

The identification issue in these more complicated models warrants some

2attention. As was seen in section 2, a is not identified if p =0, in
o o

which case cp. is free to vary independently of. 4> . . Also, when p ^ 0, the

2CLP L(y. In. ;x. ,ai. ) must be used to estimate B , p , and a ; the CLP
1

' 1 11 '^o o o
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1 ,n ;x. ,<^ ) now depends on <^ and is therefore useless. Thus, the

multinomial QCMLE, which is consistent under (2 . 10) - (2 . 12) , is no longer

consistent when p i" . A weighted least squares procedure or GMM estimator

must be used instead with p (x.,^ ) given by (7.2).

8. Concluding Remarks

This paper has shown how the notion of a conditional linear predictor

can be used to eliminate individual components in certain classes of

multiplicative unobserved effects models. This technique can be viewed as a

particular implementation of the general approach suggested by Neyman and

Scott (1948) for obtaining consistent estimates of fixed dimensional

parameters in the presence of an infinite dimensional nuisance parameter.
I

The first two moments of the count model in section 5 should be general

enough for many applications. A corollary of the analysis is that the

multinomial QCMLE has important robustness properties, and can be used to

consistently estimate the parameters of a fairly general mean and variance

function. Nevertheless, obtaining minimum chi-square estimates could result

in efficiency gains. The model of section 6, intended for continuous,

nonnegative variables, can be used in place of the usual practice of taking

natural logs and postulating a linear model.

The models in sections 5, 6, and 7 assume that x. is strictly exogenous

conditional on the latent variable or variables . This rules out feedback

from y.^ to x.
, r > t (i.e., {y. ) cannot Granger-cause (x. )). While this

'it ir -^it ^ It

is natural for certain explanatory variables, it is difficult to justify in

general. For example, in HHG's patents -R&D application, the number of

patents awarded in one year could affect subsequent R&D expenditures. If so,
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all of the estimators considered in section 5 are generally inconsistent.

Future research could usefully investigate how to relax the strict exogeneity

assumption in nonlinear unobserved components models.

Finally, conditional linear predictors can also be used to robustly

estimate multiplicative unobserved components models for multivariate time

series. For example, suppose that { (y ,x ) : t-1 , 2 , . . . ) is a vector ti:ime

series, with y a Jxl vector of counts and x a Kxl vector of conditionine

variables. A multiplicative unobserved components model might specify an

analog of (2.1) and (2.2): for j-1 J,

y .Ix ,4> - Poisson((jii u.(x
,
j3 )) (8.1)

y . ,y , are independent, conditional on x ,(^ , j ?^ h. (8.2)

Any dependence between y . and y is due entirely to the unobserved (or

"common") component
(f>

. If (8.1) and (8.2) hold, the conditioning argument

used in section 2 can be used to elimimate 4> . Then /3 can be estimated by

CMLE (although the score of the log-likelihood would not necessarily be a

martingale difference sequence). Alternatively, the moment assumptions

E(y,j|x^.^,,^,) =^^Mj(x^,/3„) (8.3)

V(y,.|x^,^,,<P,) - cp^<P^,.i.^,P^) (8.4)

CV(y^j,y^^|x^,^^,VP^) = 0, j ^ h (8.5)

J
can be used. If n s Z y . then the linear predictor of y on (l,n )'

,t . 1

1

t t

conditional on (x 4> ,(p ), eliminates the unobservables
<l>

and tp
,

as before.

Generally, unless (8.3) -(8.5) represent completely specified dynamics, the

theory of section 3 must be extended to allow the score to be serially

correlated. But this is no more difficult than QCMLE or GMM with

incompletely specified dynamics.
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Endnotes

1. The term "conditional maximuin likelihood" is somewhat unfortunate in light

of modern econometrics. This is because virtually all maximum likelihood is

conditional on a set of explanatory variables. The phrase "conditional

maximuin likelihood" appeared in the statistics literature where explanatory

variables are treated as nonrandom. Thus, one specifies an unconditional

joint distribution for the explained variables (which depends on the

explanatory variables) , and then conditions on a function of the explained

variables. Because it is too late to change the terminology, I stick to

standard usage; the term conditional MLE is reserved for the case when a

function of the explained variables is conditioned on.

2. For linear models, Chamberlain (1982) uses a linear projection argument,

which imposes no restrictions on the distribution of 4> . given x. . Due to the

nonlinear nature of the current models, this approach is unavailable.

3. If the asymptotic variance of /N(5„ - ^ ) is V , it is natural to define
•^ N o o

A. A A

V /N to be the asymptotic variance of B , denoted AV(5 ). If V is a

A A

consistent estimator of V , then V„/N is said to be an estimator of AV(5„).
o N N

4. HHG introduce two unobserved effects, which they label ^i. and 4> . .

However, it is easily seen from their equations (HHG (1984, p. 924)) that

their FENB model is equivalent to (2.8)-(2.9) with a. = 1.
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